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Abstract

Language model (LM) agents are increasingly used as autonomous decision-
makers who need to actively gather information to guide their decisions. A crucial
cognitive skill for such agents is the efficient exploration and understanding of the
causal structure of the world——key to robust, scientifically grounded reasoning.
Yet, it remains unclear whether LMs possess this capability or exhibit systematic
biases leading to erroneous conclusions. In this work, we examine LMs’ ability
to explore and infer causal relationships, using the well-established ”Blicket Test”
paradigm from developmental psychology. We find that LMs reliably infer the com-
mon, intuitive disjunctive causal relationships but systematically struggle with the
unusual, yet equally (or sometimes even more) evidenced conjunctive ones. This
“disjunctive bias” persists across model families, sizes, and prompting strategies,
and performance further declines as task complexity increases. Interestingly, an
analogous bias appears in human adults, suggesting that LMs may have inherited
deep-seated reasoning heuristics from their training data. To this end, we quantify
similarities between LMs and humans, finding that LMs exhibit adult-like inference
profiles (but not children-like). Finally, we propose a test-time sampling method
which explicitly samples and eliminates hypotheses about causal relationships
from the LM. This scalable approach significantly reduces the disjunctive bias and
moves LMs closer to the goal of scientific, causally rigorous reasoning.

1 Introduction

Language models (LM) have achieved remarkable recent advances, driving progress in natural
language processing, human-computer interaction, and robotics. Building on these models, LM
“agents”—which observe and act in an environment over time—are rapidly gaining prominence.
Such “agents” offer the promise of fully autonomous intelligent decision making, and exploratory
works have already applied these agents to challenging settings such as designing new antibody
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fragments (Swanson et al., 2024), and taking over the full experimental and paper writing loop of
machine learning conference papers (Lu et al., 2024).

A central cognitive ability of any intelligent agent is an ability to discover causal relationships in
its environment (Gopnik et al., 2004b; Blaisdell et al., 2006). Despite their success, it is unclear if LM
agents naturally possesses this ability. Additionally, human data fundamentally shape LM agents
(Gao et al., 2020; Raffel et al., 2020). LM is pre-trained to imitate human-text, fine-tuned on human-
derived signal including supervised instructions (Ouyang et al. 2022; Wang et al. 2022) and/or
preference-based reward models (Christiano et al., 2017; Bai et al., 2022). Even techniques like chain-
of-thought prompting (Wei et al., 2022) still rely on human-documented reasoning. Yet, decades
of research in psychology show that humans can be systematically irrational in many contexts
(Kahneman, 2011). A more specific question, then, is whether LMs trained to mimic human
behaviour inherits human-like biases and heuristics when reasoning about causal relationships?

To answer the above questions, we adopt the “Blicket Test” from cognitive science, which has
long been used to study how individuals throughout development infer and discover causal
relationships (Gopnik & Sobel, 2000a; Gopnik et al., 2004a; Sobel et al., 2004a; Gopnik et al., 2001;
Sobel & Kirkham, 2007; Lucas et al., 2014a; Walker & Gopnik, 2014; Bonawitz et al., 2010). These
works have shed light on how human adult causal inferences can deviate from purely rational
norms, but infants and toddlers reason with less bias like “scientists in the crib”.

In this paper, we adapt the Blicket Test into a text-based sequential decision making game to
evaluate the LM’s causal reasoning capabilities. Critically, we assume the LM is “agentic” and is
capable of active learning: it must first take actions to discover how its world works, then reflect on
its own accumulated past experiences (which, in our set-up, is always stored and given back to the
LM as prompts) to infer correct causal relationship in its world.

The contributions are as follows:

1. We conduct rigorous experiments of LM agents’ performance in our text-based Blicket Test to
study their ability to explore and reason about causal relationships.

2. We show they explore poorly, act inefficiently to narrow down the hypothesis space, and can
fail to infer correct causal relationships even when provided with perfect exploration data.

3. We directly compare LM behaviour to human developmental data, and find that LM exhibit
reasoning biases similar to adults (but not children).

4. We propose a test-time procedure that addresses this bias by explicitly constructing a flatter
prior, and prompting the LM to eliminate hypotheses under this new prior. This significantly
improving their performance.

2 Experimental Set-Up

2.1 The Blicket Test

The “Blicket Test” is an experimental paradigm involving N objects and a Blicket machine (Gopnik
& Sobel, 2000a). A subset of the objects are “blickets”, which activate the machine following some
unobserved rule. There are two possible rules.1 The “disjunctive” rule describes an OR relationship,
where the machine turns on when any blicket objects are placed on it. The “conjunctive” rule
describes an AND relationship, where the machine only turns on when all blicket objects are placed

1There can be more than two rules, but we used the two most commonly used rule in the existing literature
within the scope of this paper.
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You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them: 
object 0 is on the floor, object 1 is on the floor, object 2 is on the floor.

The machine hums softly in front of you, seemingly waiting. The light on 
the machine is currently off. You wonder if there is a relationship between 
the objects and the machine.

> put object 0 on machine

You put object 0 on the machine. The light on the machine is currently off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is now on.

 …

Based on the information you have gathered, answer the following 
question: Is object 0 a blicket?

> 

“Disjunctive” Condition:

any blickets on the machine 
turns on light 

“Conjunctive” Condition: 

all blickets must be on the 
machine to turn on light
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Figure 1: The Blicket Test.

on it. Importantly, the structural causal model for these two rules is the same: If the blicket machine
is the child node, then its parent nodes are the blickets that can turn it on, regardless of whether the
rule is conjunctive or disjunctive. An agent trying to solve the Blicket Test needs to interact with the
environment to figure out which objects turn on the machine, and the rule governing the machine
(see detailed discussion in in Section A).

We convert the Blicket Test to a text-based game (Figure 1). First, the agent enters an exploration
phase. In each step, the agent can place a single object on or off the machine (via specifying “>
put [object id] [on/off] the machine”), and observe the state of the machine (whether the light
turned on or off). The agent also can perform auxiliary actions including terminating the episode
before the pre-specified maximum number of steps each trial (via “> exit”) if it believes it has
collected enough information. After the exploration stage, the agent enters the Q&A phase. It is
provided with the full observation history and asked whether each of the N objects are blickets.
The agent answers “> True / False” to each question.

The goal of the agent is to correctly answer all of the questions. To do this, the agent must collect
sufficiently informative observations during the exploration phase in order to resolve the uncertainty
about blicket identities and the underlying rule.

2.2 Information Gain

One way to measure optimal behaviour in the Blicket Test is through each action’s informativeness
(Kosoy et al., 2022b). Concretely, the space of hypothesis F is the set of functions mapping from
the objects’ states (on or off the machine) X ∈ X to the machine’s state (light is on or off), Y ∈ Y .
F : X → Y . The agent’s goal is to discover the correct F ∈ F , via maximizing information gain
(Bernardo, 1979; Rainforth et al., 2024):

InfoGain(x, y) := H[p(F)]− H[p(F|x, y)] . (1)
This describes the reduction in (Shannon) entropy from the prior over the hypothesis space, p(F),
to the posterior after observing new data, p(F|x, y). In the Blicket Test, the space of hypothesis is
discrete, consisting of all combinations of items being blickets with the number of rules.2 Further,

2For N items and 2 rules (conjunctive / disjunctive), there are a total 2N+1 hypotheses.
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if we assume the the distribution p(F) is always uniform over all non-zero hypotheses, then
maximizing information gain correspond to eliminating the most number of hypotheses. When all
but one hypothesis remains, p(F) has zero entropy and no further information gain is possible.

In practice, an agent does not know y a priori. Though it can maximize expected information gain,
G(x) := Ep(y|x) [InfoGain(x, y)] = Ep(F)p(y|F,x) [log p(F|x, y)− log p(F)] . (2)

As a baseline, we will construct an “Oracle InfoGain” agent which explicitly computes and
maximizes this quantity based on one-step information maximization as a good approximation of
the upper-bound for how well we can explore .

2.3 Models and Baselines

We evaluate a number of LMs (Appendix B.1), over a range of carefully designed system messages
(Appendix B.2), with multiple prompting methods (Appendix B.3). All agents are allowed up to
32 steps in a given trial. We evaluate in a easier environment containing 4 objects (2 are blickets),
and a harder environment containing 8 objects (2 are blickets). An example full interaction trace is
provided in Appendix B.4.
Baseline Models We compare the LM agents against non-LM baseline agents. One is the InfoGain
Oracle, which explicitly calculates the expected information gain for each action, and takes the
action with the max information gain. This “Oracle” reasons about how to do exploration optimally
and provides an approximate upper-bound for performance in this environment. The second agent
is simply a random agent which takes random actions (to put objects on or off the machine), and also
randomly guesses the answers during the Q&A phase, providing a lower-bound for performance.

Having now established the task and experimental set-up, we report the ability of LMs to explore
and infer causal relationships below.

3 LM Agents Exhibit Cognitive Biases

3.1 LM agents all perform poorly in the Blicket Test
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(a) Best models over prompt variants. Error bar denote standard error.
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Figure 2: Quiz accuracy of various models during the question-and-answering phase of the Blicket
Test. The accuracy measures the proportion of trials where the model correctly identifies all blickets.

First, we directly evaluate the ability of LM agents to successful identify all blickets. Figure 2a
shows the result of the best model within each model class over all system messages and prompting
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methods. Across the board, all LMs struggle when the number of objects increase from 4 to 8.
Interestingly, LMs also systematically struggle when going from the disjunctive (“OR”) rule to the
conjunctive (“AND”) rule. This is not due to conjunctive rules being harder: the InfoGain Oracle
can perfectly resolve the entire hypothesis space every time and achieves an Q&A accuracy of 1.
This hints at the LMs having a disjunctive bias: a preference for a disjunctive interpretation of the world
over a conjunctive one. Models performs worse in the 8 object, conjunctive case. This effect is further
observed in Figure 2b: across various models and prompting techniques, the LMs systematically
skew toward lower conjunctive accuracy. We report both the 4 and 8 objects results in Figure 10.

The results here outline a fundamental inability of LMs to causally explore and discover its environ-
ment, even though we are in a setting where an optimal solution is tractably computable. We study
this further. We first investigate general factors that correlate with Blicket Test success in Section 3.2,
study LM’s (in)ability to do efficient exploration in Section 3.3, and evaluate their (in)ability to infer
causal relationship unbiasedly from data in Section 3.4.

3.2 Which factors contribute to success?
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Figure 3: Correlation analysis of factors con-
tributing to model performance. Each point
is a unique model + prompt + environment
rule combination. The Spearman’s rank cor-
relation along with the p-value is reported.
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Figure 4: Hypothesis elimination efficiency.

We begin by studying common factors which may contribute to agent performance by analyzing
correlations in the 8 objects setting. For each factor, we compute the best logistic fit, and conduct
statistical hypothesis testing using Spearman’s rank correlation to determine whether the factor is
(rank) correlated with final performance. Spearman’s instead of Pearson’s correlation is used as the
data do not necessarily obey linear relationships. We report the result and p-values in Figure 3.

Information Gain (Equation 1) is computed between the initial and final p(F) (assuming uniform
distribution over consistent hypothesis). This shows the strongest correlation with performance
accuracy, leading credence to information gain being a measure of optimality in this task.
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Unique State Visitation is a commonly used metric in reinforcement learning as a proxy for good
exploration (Bellemare et al., 2016). While this is correlated with final performance (p < 0.05), it
shows weaker correlation as compared to information gain.

Number of steps taken is a proxy for when the LM believes it has gathered enough information, and
therefore exists the trial early. Interestingly, this is strongly (negatively) correlated with performance,
hinting at the LMs having a good notion of when it has explored well.

Response length measures the average number of output tokens during the Q&A phase (including
reasoning tokens for reasoning models). This is a proxy for the amount of “reasoning” the LM
performs. We find that longer reasoning correlate with lower performance (p < 0.05).

As information gain—an exploration metric—shows the strongest correlation with final perfor-
mance, we now turn to an in-depth study of each agent’s ability to efficiently explore.

3.3 All LM agents do not explore efficiently

To study exploration efficiency, we quantify the number of hypotheses consistent with observed data as a
function of actions taken. An agent that efficiently explores should rapidly eliminate hypotheses
down to just one. This is equivalent to maximizing information gain as defined in Section 2.2.

We observe in Figure 4 that the InfoGain Oracle efficiently reduces the number of hypothesis down
to one. LM agents, on the other hand, perform worse. Similar to Section 3.1, they struggle when the
number of objects are increased, and with conjunctive (“AND”) rules. Note again the conjunctive
setting is not inherently more difficult to explore: the InfoGain Oracle resolves both in similar
number of actions, and provides further evidence for an disjunctive bias (here specifically for
exploration). We also observe variability between the LM agents in their exploration efficiencies,
with GPT-4o performs the best, while other frontier models such as Gemma3 and deepseek-reasoner
at times exploring worse than randomly taking actions in the environment.

3.4 Most LM agents show reasoning bias when inferring causal relationships
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Figure 5: Evaluating LM’s ability to infer causal relationship when the same exploration data is
given as context in the 8 objects setting. Error bar denote standard error of mean.

Finally, we investigate the LM’s stand-alone ability to infer causal relationships by providing all
LMs with a standardized set of exploration data, including exploration trajectories generated by
(i) an LM (GPT-4o), (ii) the InfoGain Oracle (which perfectly resolve the hypothesis space), (iii)
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Figure 6: Proportion of response that favors a conjunctive inference about whether the ambiguous
key object is a blicket, when conjunctive, disjunctive and baseline (i.e. inconclusive) hints about the
rule governing the machine were presented, respectively.

random exploration, and (iv) count-based exploration agent that place objects on/off the machine
inversely proportional to how often they’ve been perturbed before.

The results are in Figure 5. Of particular interest is the conjunctive (“AND”) setting: we observe that
all LMs improve in Q&A performance when provided with oracle exploration data as supposed to
LM-exploration, suggesting that bad exploration plays a causal role in their poor Q&A performance.
However, for all but the deepseek-reasoner model, the LMs still do not achieve near perfect
accuracies despite the oracle exploration data. Further, a disjunctive bias is still present for models
such as GPT-4o, which still performs worse in the conjunctive setting than the disjunctive one even
with oracle data present in both.

4 LM’s cognitive biases appear similar to human adults

The systematic disjunctive bias observed in LMs’ causal reasoning raises a question: where do
these cognitive biases originate? We postulate that LMs, trained on vast corpora of internet text
predominantly generated by adult humans, naturally internalize cognitive biases characteristic of
adult human reasoning. To this end, we further evaluate the LM agents in Blicket Test experiments
where human data is available (Lucas et al., 2014b; Gopnik et al., 2017; Kosoy et al., 2022b) in
order to provide direct comparisons of LM behaviours to that of humans. We conduct two sets of
experiments which (i) compare the LM agents’ preference when performing inference based on
ambiguous information to human children and adults, and (ii) compare LM agents’ exploration
characteristics to children performing the same task. Unlike the experiments in Section 3, all
experiments in this section will be conducted with 3 objects and 2 blickets to be consistent with the
psychology literature.

4.1 LM agents prefer disjunctive answers given ambiguous evidence (like adults)

We replicate the Blicket Test experiment from Lucas et al. (2014b) and Gopnik et al. (2017), which
investigate children’s and adults’ preference for disjunctive versus conjunctive inference when
ambiguous evidence is presented. In short, the agents are first presented with exploration data
hinting at the Blicket machine following a disjunctive (“OR”) or conjunctive (”AND”) rule. Then,
the agent is provided with additional data with new objects, but the same machine. The new data is
by design ambiguous, thus the agent must combine their previous belief about the machine with
the new objects’ data to identify which (new) objects are blickets. In particular, for one new object,
identifying it as a blicket means that the agent believes that the machine obeys the conjunctive rule.
We provide more details for this set-up in Section B.5.

We report the LM’s tendency to identify the key object as a blicket in Figure 6, along with that of (i)
human children (4 year olds) and (ii) human adults. The human data is replicated from Gopnik
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et al. (2017). We observe that in general, LMs show high “adult-like” bias toward thinking the
machine is disjunctive, even when the evidence suggests it’s conjunctive. 4-year-olds, on the other
hand, correctly infer that the machine is conjunctive when the evidence suggests so.

4.2 LM agents spend less time exploring disjunctive settings (unlike children)

Previous psychology research on the Blicket Test has predominantly focused on causal infer-
ence—where participants are passively presented with observations. However, Kosoy et al. (2022b)
took a first step towards examining how children generate data through active causal exploration.
Their results revealed that children’s exploration is characterized by an intrinsic, unbiased curiosity;
the underlying causal rule does not significantly impact children’s exploratory behavior (Figure 7,
second and fourth panels from the left; additional data in Section C.1).

Figure 7: LM exploration is more affected by the causal rule than children. Left panels: average
number of unique combinations tried per trial by LMs or children. Right panels: exploration
extensiveness per trial, measured as the average number of steps taken before existing the trial
in LMs, or the number of times children pressed the “check” button. Error bar denote standard
deviation. Two-sample t-test: * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant.

Here, we analyzed the exploration trajectories generated by LMs in a 3-object setting, using system
prompts as similar to the psychology experimental scripts as possible, to allow direct comparison
to the psychology literature. We measured the number of unique object combinations attempted
(same as unique states visited) as well as the number of steps taken before exiting in each trial, and
compared the results to children data from Table 1 of Kosoy et al. (2022b). Our analysis showed
that, unlike children, LMs explored differently for the different causal structures (Figure 7, first and
third panels from the left): LMs generally attempted less unique combinations of objects and spent
less time exploring in the disjunctive condition, suggesting that their exploration is influenced by
their biases.

5 Making LMs more scientific through inference time hypothesis sampling

One way we can interpret the LM’s deep rooted bias for disjunctive hypotheses is that the LM has a
skewed prior p(F). One way to fix this is to “flatten out” this prior. While it is highly non-trivial
to do this via weight updates, we can do this during inference time by explicitly representing
uniform belief over a discrete set of hypothesis. Specifically, we construct a new prior, q(F), which
is “flatter” than the LM prior. We do this by sampling discrete hypotheses from p(F) and rejecting
identical samples. We give each accepted sample uniform weight, which gives us q(F). It is trivial
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Repeat: “Given the 
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hypothesis elimination

Example Blicket 
hypotheses

def hypothesis_3(objects) -> bool: 
return objects[0] and objects[7]

def hypothesis_2(objects) -> bool: 
return objects[1] or objects[2]

def hypothesis_1(objects) -> bool: 
return objects[6]

𝑞 𝐹

Figure 8: Hypothesis sampling agent first samples (without replacement) from the LM prior to
construct new prior q(F), then prompt the LM to maximize expected information gain under q(F).

to show that q(F) is uniform over its support and that its entropy monotonically increases with
each additional unique sample (Remark 1). After constructing the new prior q(F), we maximize
expected information gain under this prior. Since the prior assigns uniform probability over each
hypothesis, maximizing expected information gain corresponds to eliminating hypotheses. We
therefore prompt the LM to “take actions to eliminate as many hypotheses as possible” from q(F),
update the hypotheses in q(F) based on new observations, and repeat. This procedure is outlined
in Figure 8.
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Figure 9: Hypothesis sampling agent in the 8 objects environment.

We show the results from this procedure in Figure 9. With enough unique samples, we expect q(F)
to provide a less skewed prior (as compared to p(F)), and maximizing expected information gain
under q(F) to better resolve the disjunctive vs. conjunctive differences. Indeed, we see that with
more initial unique samples, the LM agents both explore better, and do better in Q&A, showing
no decrease in performance in conjunctive vs. disjunctive settings. Additionally, the hypothesis
sampling agent no longer shows a (disjunctively) biased exploration pattern initially observed in
Section 4.2. We report this result in Appendix C.2.3.
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6 Conclusion

Our study reveals that language model agents exhibit systematic biases in causal reasoning, par-
ticularly a “disjunctive bias” that resembles the reasoning patterns of human adults rather than
children. Our test-time hypothesis sampling method significantly reduces this bias, advancing
LMs toward more scientifically rigorous causal reasoning—a crucial capability for autonomous
decision-making systems. Future work should explore whether our hypothesis sampling approach
generalizes to more complex causal structures beyond Blicket tests, and to what extent it can be
integrated with other reasoning techniques. Finally, additional human data, specifically detailing
exploration patterns, can further shed light on the priors adults and children bring to discovering
causal relationship.
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Appendix

A Related Works

The Blicket Machine The blicket detector task has a long history in development psychology
extending back to seminal studies in causal reasoning and categorization (Gopnik & Sobel, 2000a;
Gopnik et al., 2004a; Sobel et al., 2004a; Gopnik et al., 2001; Sobel & Kirkham, 2007; Lucas et al.,
2014a; Walker & Gopnik, 2014; Bonawitz et al., 2010). The core premise of the blicket detector is
a machine that activates under specific conditions, challenging an agent (in the original setting
a child) to discover which objects (called “blickets”) trigger the machine and according to what
rule (also known as ”over-hypothesis”). A disjunctive rule will activate the machine when any
blicket is present, whereas a conjunctive rule requires multiple blickets to activate the machine. By
exploring object combinations and/or observing machine activation, agents must generate and
test hypotheses about causal relationships. While simple, it reveals profound insights into how
intelligent systems—whether humans or AI—discover and reason about causal structures. In our
study, we translate this experimental paradigm into a text-based interaction, probing LMs’ capacity
to explore, infer, and reason about causal relationships.

Reasoning and Exploration in LMs Recent advancements in LMs have significantly expanded
their applications in autonomous decision-making settings Brown et al. (2020); OpenAI (2023);
Bubeck et al. (2023). Particularly, LMs have been successfully applied in tasks requiring exploration
and reasoning, such as interactive decision-making Yao et al. (2022); Shinn et al. (2023); Wang et al.
(2023a) and scientific discovery Boiko et al. (2023). For example, Yao et al. (2022) proposed ReAct,
enabling LMs to interleave reasoning and acting, thus improving decision-making capabilities
Yao et al. (2022). More recent frameworks like Reflexion (Shinn et al., 2023) and Voyager (Wang
et al., 2023a) further leverage iterative exploration and reflection to boost autonomous exploration
performance. However, existing literature also points to significant limitations in the exploratory
capabilities of LMs. Osband et al. (2016) highlight that effective exploration remains a fundamental
challenge even in traditional reinforcement learning agents (Osband et al., 2016). Recent work by
Liu et al. (2023) further underscores the insufficient exploratory behaviors of LMs, suggesting that
their tendency to imitate human-generated text leads to suboptimal decision-making strategies
Liu et al. (2023). Our work complements these findings by systematically studying whether LMs
exhibit biases specifically in causal inference contexts, thus bridging a gap in current understanding
of LM exploration and inference.

A closely related work to our hypothesis sampling agent is Piriyakulkij et al. (2024), which similarly
study a Blicket-like environment and samples hypotheses from an LM. Our work is complementary
to theirs, though we focus much more on investigating the LM’s ability (and failure) to do causal
exploration and reasoning, in a task where the LM needs to perform more actions, and evaluate over
a greater range of models. Another related work is Wang et al. (2023b) which similarly generates
code as hypotheses, although focusing on the inductive reasoning ARC task rather than agnetic
causal discovery tasks.

Biases in Human and Machine Reasoning Psychological research extensively documents sys-
tematic biases in human causal reasoning Tenenbaum et al. (2007); Griffiths & Tenenbaum (2009);
Lucas et al. (2014b). Among these, the blicket” paradigm introduced by Gopnik and Sobel (2000)
Gopnik & Sobel (2000b) has emerged as a canonical method for investigating causal inference in
humans, particularly children. Crucially, research using blicket tests shows a robust disjunctive
bias”, where humans, especially adults, systematically favor simpler disjunctive causal hypotheses
over conjunctive ones, even when evidence supports the latter equally or more strongly Lucas et al.
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(2014b); Bonawitz et al. (2012); Sobel et al. (2004b). These biases likely arise from human reliance on
cognitive heuristics or simplicity priors during causal reasoning

Previous studies indicate that LMs internalize human-like cognitive biases from their training data,
including reasoning shortcuts or heuristics (Hagendorff, 2023; Dasgupta et al., 2022). Our study
directly addresses whether these biases also manifest in LMs performing causal reasoning tasks,
using the blicket paradigm to rigorously quantify such tendencies.

B Experimental Details

B.1 Language Model Access

We accessed the GPT models and DeepSeek models using the OpenAI and DeepSeek APIs, re-
spectively. Specifically, we use gpt-4o-2024-08-06 and gpt-4o-mini-2024-07-18. As DeepSeek
does not provide reproducible access specifications that we are aware of, we report we access the
DeepSeek-V3 (deepseek-chat) and DeepSeek-R1 (deepseek-reasoner) models over the course of
March 23 to March 28, 2025. Otherwise, we use Ollama (Ollama, 2025).

B.2 System Message

We carefully design three different system message variants based on how information is presented
to human participants historically in Blicket Test experiments (Lucas et al., 2014a). We provide one
version based on a common-sense explanation of the task (human default), a version which induces
more conjunctive semantics as noted by Lucas et al. (2014a) (human conjunctive), and a version
that provides a rigorous math definition to avoid ambiguity (math definition).

The general system message prompt template follows the following format:

[## INITIAL MESSAGE ##]

Your goals are:
- Identify which objects are blickets.
- Infer the underlying rule for how the machine turns on.

Here are the available commands:
look: describe the current room
put ... on ...: put an object on the machine or the floor
take ... off ...: take an object off the machine
exit: exit the game

[## TIPS ##]

You have #HORIZON# steps to complete the task. You can also exit the task early
if you think you understand the relationship between the objects and the

machine. After the task is done , you will be asked which objects are
blickets , and the rule for turning on the machine.

You will be prompted at each turn to choose actions.

B.2.1 Human Default Variant

Initial Message:
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You are an intelligent , curious agent. You are playing a game where you are in
a room with different objects , and a machine. Some of these objects are
blickets. You can 't tell which object is a blicket just by looking at it.
Blickets make the machine turn on, following some hidden rule.

Tips:

Tips:
- All objects can be either on the machine or on the floor.
- You should think about how to efficiently explore the relationship between

the objects and the machine.

B.2.2 Human Conjunctive Variant

Initial Message:

You are an intelligent , curious agent. You are playing a game where you are in
a room with different objects , and a machine. Some of these objects are
blickets. You can 't tell which object is a blicket just by looking at it,
but they have blicktness inside of them. Blicktness makes the machine turn
on, following some hidden rule.

Tips:

Tips:
- All objects can be either on the machine or on the floor.
- You should think about how to efficiently explore the relationship between

the objects and the machine.

B.2.3 Math Definition Variant

Initial Message:

You are an intelligent , curious agent. You are playing a game where you are in
a room with different objects , and a machine. Some of these objects are
blickets. You can 't tell which object is a blicket just by looking at it,
but they have blicktness inside of them. Blicktness makes the machine turn
on, following some hidden rule.

Tips:

Tips:
- All objects can be either on the machine or on the floor.
- You should think about how to efficiently explore the relationship between

the objects and the machine.
- A blicket is defined as an object whose state is not independent of the state

of the machine (in other words , the object 's state distribution and the
machine 's state distribution have nonzero mutual information)
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B.3 Prompting Techniques

For non-reasoning models, we also use a number of standard prompting techniques, including
ReAct (Yao et al., 2022), Reflexion (Shinn et al., 2023), and Chain-of-Thought (CoT) (Wei et al.,
2022). As the point of the Blicket Test is to discover knowledge, we do not provide it with few-shot
examples, but ask the LMs to do exploration zero-shot, based on generic prompts. The prompting
technique is applied both during exploration (where agent is prompted to act), and Q&A (where
the agent answers True/False). Details below.

Default Prompt

Directly output the command in the format '> command '. Ensure only one command
is included.

ReAct Prompt

First briefly reason and think about your plan to solve the task. Then , output
the command in the format '> command '. Ensure only one command is included.

Reflexion Prompt

Please first reflect on your plan to solve the task. Explain your reasoning and
self -evaluate any potential issues before outputting the final command in

the format '> command '. Ensure only one command is included.

Chain-of-Thought Prompt

Please provide a detailed chain -of-thought outlining all intermediate steps
leading to your decision , and then output the final command in the format
'> command '. Ensure only one command is included.

B.4 Example Trajectory

Here we provide an example full trajectory in an environment with 3 object, with conjunctive
(AND) rule. This is the full prompt given to the agent during the Q&A phase, which contains the
entire exploration interaction history as context. In this environment, objects 1 and 2 are blickets.

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them: object 0
is on the floor , object 1 is on the floor , object 2 is on the floor.

The machine hums softly in front of you , seemingly waiting. The light on the
machine is currently off. You wonder if there is a relationship between the
objects and the machine.

> put object 0 on machine
You put object 0 on the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.
> put object 2 on machine
You put object 2 on the machine. The light on the machine is now on.
> take object 0 off machine
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You took object 0 off of the machine. The light on the machine is now on.
> take object 1 off machine
You took object 1 off of the machine. The light on the machine is currently off

.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is now on.
> take object 2 off machine
You took object 2 off of the machine. The light on the machine is currently off

.
> take object 1 off machine
You took object 1 off of the machine. The light on the machine is currently off

.
> put object 2 on machine
You put object 2 on the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is now on.
> exit
Exiting the episode.

Based on the information you have gathered , answer the following question: Is
object 2 a blicket?

Directly output the answer in the format '> True/False '. Ensure only one answer
is included.

B.5 Human inference experiments

To study whether LMs are biased by prior assumptions during inference, we conducted a direct
textual replication of the inference experiment used in Lucas et al. (2014b) and Gopnik et al. (2017),
designed to probe causal reasoning under uncertainty. First, in the “training” phase, the participants
(in our case, LMs) are presented with trials that provide evidence suggesting one of three scenarios:
(1) A disjunctive causal rule governs the machine; (2) a conjunctive causal rule governs the machine;
(3) the evidence is ambiguous and insufficient to definitively determine which causal structure
governs the machine (the “baseline” condition). Below is the full trajectory of one training trial for
each of the 3 scenarios: (1) disjunctive evidence:

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them: object 0
is on the floor , object 1 is on the floor , object 2 is on the floor. The
machine hums softly in front of you , seemingly waiting. The light on the
machine is currently off. You wonder if there is a relationship between the
objects and the machine.

> put object 0 on machine
You put object 0 on the machine. The light on the machine is now on.
> take object 0 off machine
You took object 0 off the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.
> take object 1 off machine
You took object 1 off the machine. The light on the machine is currently off.
> put object 2 on machine
You put object 2 on the machine. The light on the machine is now on.
> take object 2 off machine
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You took object 2 off the machine. The light on the machine is currently off.
> put object 0 on machine
You put object 0 on the machine. The light on the machine is now on.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is now on.
> take object 1 off machine
You took object 1 off the machine. The light on the machine is now on.
> put object 2 on machine
You put object 2 on the machine. The light on the machine is now on.
> take object 0 off machine
You took object 0 off the machine. The light on the machine is now on.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is now on.

(2) conjunctive evidence:

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them: object 0
is on the floor , object 1 is on the floor , object 2 is on the floor. The
machine hums softly in front of you , seemingly waiting. The light on the
machine is currently off. You wonder if there is a relationship between the
objects and the machine.

> put object 0 on machine
You put object 0 on the machine. The light on the machine is currently off.
> take object 0 off machine
You took object 0 off the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.
> take object 1 off machine
You took object 1 off the machine. The light on the machine is currently off.
> put object 2 on machine
You put object 2 on the machine. The light on the machine is currently off.
> take object 2 off machine
You took object 2 off the machine. The light on the machine is currently off.
> put object 0 on machine
You put object 0 on the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.
> take object 1 off machine
You took object 1 off the machine. The light on the machine is currently off.
> put object 2 on machine
You put object 2 on the machine. The light on the machine is now on.
> take object 0 off machine
You took object 0 off the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.

(3) ambiguous evidence:

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them: object 0
is on the floor , object 1 is on the floor , object 2 is on the floor. The
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machine hums softly in front of you , seemingly waiting. The light on the
machine is currently off. You wonder if there is a relationship between the
objects and the machine.

> put object 0 on machine
You put object 0 on the machine. The light on the machine is currently off.
> take object 0 off machine
You took object 0 off the machine. The light on the machine is currently off.
> put object 0 on machine
You put object 0 on the machine. The light on the machine is currently off.
> take object 0 off machine
You took object 0 off the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.
> take object 1 off machine
You took object 1 off the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.
> take object 1 off machine
You took object 1 off the machine. The light on the machine is currently off.
> put object 1 on machine
You put object 1 on the machine. The light on the machine is currently off.
> take object 1 off machine
You took object 1 off the machine. The light on the machine is currently off.
> put object 0 on machine
You put object 0 on the machine. The light on the machine is currently off.
> put object 2 on machine
You put object 2 on the machine. The light on the machine is now on.

Next, in the “test phase”, the participants (or LMs) are presented with a test trial with new objects
and the same machine governed by the causal rule introduced in the training trials. Below is the
full trajectory for the test trial:

You are in a new room. You see the same machine as the one you previously saw
at the center of this room.

You now have 3 different objects scattered around the room. You observe them:
object A is on the floor , object B is on the floor , object C is on the
floor. The machine hums softly in front of you , seemingly waiting. The
light on the machine is currently off. You wonder if there is a
relationship between the objects and the machine.

> put object A on machine
You put object A on the machine. The light on the machine is currently off.
> take object A off machine
You took object A off the machine. The light on the machine is currently off.
> put object A on machine
You put object A on the machine. The light on the machine is currently off.
> take object A off machine
You took object A off the machine. The light on the machine is currently off.
> put object A on machine
You put object A on the machine. The light on the machine is currently off.
> take object A off machine
You took object A off the machine. The light on the machine is currently off.
> put object B on machine

20



Preprint. Under review.

You put object B on the machine. The light on the machine is currently off.
> take object B off machine
You took object B off the machine. The light on the machine is currently off.
> put object A on machine
You put object A on the machine. The light on the machine is currently off.
> put object C on machine
You put object C on the machine. The light on the machine is now on.
> put object B on machine
You put object B on the machine. The light on the machine is now on.
> take object B off machine
You took object B off the machine. The light on the machine is now on.

Based on the information above , is object A a blicket?

Directly output the answer in the format '> True/False '. Ensure only one answer
is included.

The test trial is intentionally designed such that the ground truth can be one of the two possibilities:
either both A and C are blickets, and the machine follows a conjunctive rule, or only C is a blicket,
and the machine follows a disjunctive rule. Participants (or LMs) are then asked whether each
test object (A, B, C) is a blicket. In particular, the answer to the identity of the test object A as a
potential blicket (causal agent) depends on the what the participant (or LM) believes the underlying
rule of the causal system is. As such, we quantify the model’s propensity to classify A as a blicket,
which serves as a proxy for identifying cognitive bias. The experimental setup mirrors the original
psychological study, translated into a text-based interaction format that allows LMs to reason about
causal relationships.

C Additional Results

C.1 Human exploration characteristics

Kosoy et al. (2022a) conducted Blicket Test experiment with 4-year-old children and allowed them
to freely explore different combinations of given objects to “figure out how to make the machine
go”. Here we reproduce their results from Table 1 graphically and ran statistical tests to have a
better understanding of how well LMs explore in comparison to human children 4.2. In summary,
across different experimental conditions (whether the causal rule of the blicket machine can be
inferred from example trials, i.e. “given hypothesis”, vs. when the causal rule cannot be inferred, i.e.
“not given hypothesis”) and measurements (number of unique combinations attempted, number of
“checks” which we use as the equivalent for the number of actions taken before exiting, time spent
exploring), children explore similarly for conjunctive machine and disjunctive machine (Figures 11,
12).

21



Preprint. Under review.

0.0 0.2 0.4 0.6 0.8 1.0
Disjunctive Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Co
nj

un
ct

iv
e 

Ac
cu

ra
cy

Number of Objects: 4

0.0 0.2 0.4 0.6 0.8 1.0
Disjunctive Accuracy

Number of Objects: 8

infoGain oracle
baseline random
gpt-4o
gpt-4o-mini

deepseek-chat
deepseek-reasoner
gemma3:27b
qwq

cot
default
react
reflexion

Figure 10: All models’ disjunctive and conjunctive accuracies. Colours indicate model type, while
point shapes indicate the prompt. This is an extension of the result in Figure 2b.

Figure 11: Additional exploration statistics in children, reproduced from Table 1 of Kosoy et al.
(2022b) aggregating “given hypothesis” and “not given hypothesis” conditions. Left: Number of
times children checked if state of the blicket machine. Right: Average time children played before
seeing the blicket detector go on for the first time. Error bar denote standard deviation. Two-sample
t-test significance level denote at the top of each panel.
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Figure 12: Additional exploration statistics in children, reproduced from Table 1 of Kosoy et al.
(2022b) without aggregating. Top left: Average number of times children pressed the “check”
button per trial. Top right: Average number of unique combinations attempted per trial. Bottom
left: Average total time spent exploring the blicket machine. Bottom right: Average time before
successfully activating the machine for the first time in a trial. Error bars denote standard deviation.
Two-sample t-test significance level denote at the top of each panel.

C.2 Hypothesis Sampling Agent

C.2.1 Proof of Remark

Remark 1. Let p(F) be a discrete prior distribution, and we sample without replacement from p(F) to
construct empirical distribution q(F). Let qt(F) be the empirical distribution after t unique samples, the
entropy of q monotonically increases with each additional unique sample, H(qt) < H(qt+1).
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Proof. Given the already sampled set St = { f1, f2, ..., ft}, the empirical distribution is defined as:

qt( f ) =
{ 1

t if f ∈ St ,
0 otherwise .

(3)

The entropy is H(qt) = −Eqt [log qt] = − log( 1
t ) = log t. log is a monotonically increasing function

in t.

C.2.2 Exploration for Both Rules
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Figure 13: Hypothesis elimination performance of the hypothesis sampling agent for 8 objects for
both disjunctive (”OR”) and conjunctive (”AND”) rules.

C.2.3 Hypothesis sampling agent resolves biased exploration patterns

Additionally, we evaluated whether our method of hypothesis sampling addressed the differences
in exploration patterns between conjunctive and disjunctive causal structures that we observed
in 4.2, wherein LMs explore more extensively in the conjunctive condition than disjunctive. We
observed that sampling hypothesis significantly reduced the difference in exploration patterns
between conjunctive and disjunctive conditions (Figure 14), suggesting that our method helps LM
explore more systematically, much like a curious child.
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Figure 14: Amount of exploration by gpt-4o in the 8-object blicket environment with default system
prompts, measured by the number of unique combinations of objects attempted per trial (top) and
number of steps taken before exiting the trial, for agents before (left) and after (right) inference-time
hypothesis sampling, averaged across trials, error bar denote standard deviation. Two-sample t-test:
* p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant.
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