
Lambda Successor Return Error

Anthony GX-Chen
Mila - Quebec AI Institute

McGill University

Veronica Chelu
Mila - Quebec AI Institute

McGill University

Blake Richards
Mila - Quebec AI Institute

McGill University

Joelle Pineau
Mila - Quebec AI Institute

McGill University
Facebook AI Research

Abstract

We introduce the λ Successor Return Error (λ-SRE), by factorizing λ-return error
into one-step temporal difference errors, and a successor-like representation (SR).
This return can be computed independent of the parameterization of the value
function. We introduce the λ-SRE algorithm and demonstrate a proof of concept
in the tabular random chain environment, showing its advantageous performance
to both the offline λ-return, and the SR algorithm (with factorized reward repre-
sentations) for policy evaluation. We conclude by discussing this perspective in
the context of the recent neuroscience hypothesis of the brain using successor-like
representations.

1 Introduction

In reinforcement learning (RL), the successor representation (SR) is a way of representing each
state as the total future visitations to other states [1] under a given policy. Once learned, the SR
can be combined with any instantaneous reward function to compute the value function in "one
shot", assuming stationary environment dynamics. In neuroscience, many works have discussed the
use of SR, particularly in relation to place fields [2] in the hippocampus [3, 4, 5, 6]. Specifically,
physiological studies show place fields as skewed in a policy and transition-dependent way [5, 7, 8, 9],
and human behavioural data appears to be well-fitted by a combination of SR and model-based
algorithms [3]. Such a "predictive representation" may also shed light on canonical psychology
results, such as Tolman’s latent learning [10]. While the neuro-SR literature have theorized a number
of potential use-cases (see: [5, 11, 12]), the predominant theory is that SR allows for one-shot
computation of the value function [1], allowing for a "middle-ground" between model-free efficiency
and model-based flexibility [4].

While having a well-learned SR can be used for transfer and discovering structures in the environment
dynamics [13, 14, 15], it is less clear that SR is useful in the case of tabula rasa single-policy
evaluation. As [16] speculates and [17] empirically demonstrates, decoupling the value function
into SR and reward can result in value estimates that are quite poor until the learning is complete.
Furthermore, the ability for SR to transfer well may be limited to cases where the optimal policy is
similar [17].

One family of methods for efficient tabula rasa policy evaluation is the λ-return [18]. This can be
viewed through the lens of eligibility traces (via the "backward view", or TD(λ)), which keep track
of previously activated parameters to quickly update them with new rewards. Alternatively, it can
be viewed through the lens of the λ-return (the "forward view"), by constructing an exponentially
weighted average over all future (n-step) value predictions. TD(λ) allows for online updates of value

Preprint. Accepted to NeurIPS 2020, Workshop on Biological and Artificial Reinforcement Learning.

functions, while the λ-return is a "theoretical" view that requires the full length of a future trajectory,
though it is more easily adopted to episodic settings and settings that do training over trajectories (i.e.
recurrent neural net training) [19].

We focus on the single-policy evaluation case and propose a method to learns SR-like representations
for single policy evaluation. We show specifically that the forward view λ-return error, in expectation,
can be decomposed into expected (one-step) temporal difference errors, and a SR-like quantity
denoting discounted future occupancy. We refer to the SR-weighted return as the λ Successor Return.
Our contributions are as follows: (i) we show an interesting connection between λ-return and SR-like
representations in the form of λ successor return for temporal credit assignment; (ii) we translate
these insights into an algorithm and empirically illustrate that it outperforms λ-return and the SR in a
tabular toy domain; and (iii) we interpret the proposed mechanism in the neuroscience context.

2 Background

We use the standard RL setup, formalized using a Markov Decision Process (MDP) defined by
states s ∈ S, actions a ∈ A, transition probabilities P = P (St+1|St, At), rewardR and a discount
factor 0 ≤ γ ≤ 1. π : S → A is the policy, and Pπ(S′|S) = P(S′|S, π(S)) is the state transition
probabilities under policy π. We want to learn the value function vπ, which we approximate:
vθ(st) ≈ vπ(st) = Eπ[

∑∞
k=0 γ

kRt+k+1|St = st]. Note we sometimes use vθ,t = vθ(st) for
brevity.

We learn vθ by constructing returns as update targets. The n-step return at time t is defined as

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnvθ(St+n). (1)

The lambda (λ-) return is an exponentially weighted average over all n-step returns.

Gλt = (1− λ)

∞∑
n=1

λn−1Gt:t+n. (2)

We minimize the mean squared loss (MSE) loss between the λ-return and vθ: Lt = 1
2 [Gλt − vθ(st)]2.

We have the update equation:

θn+1 = θn + α[Gλt − vθ,t]
∂vθ,t
∂θn

, (3)

where α is the learning rate, or step size. We note we can write the λ-error term in Equation 3 as:

Gλt − vθ,t =

∞∑
k=t

(λγ)k−tδk, (4)

where δk = Rk+1 +γvθ(sk+1)− vθ(sk) is the TD(0) error at timesteps k, k ≥ t. The equality above
is exact in the case of offline (i.e. end-of-episode) updates, and becomes approximate if updates
to θ are made online. This equivalency can be demonstrated by expanding the lambda return and
re-arranging the order of summations.

3 The Lambda Successor Return

Let us first define the lambda successor representation (λ-SR):

mπ(s, s′) =

∞∑
n=0

(λγ)nPπ(St+n = s′|St = s), (5)

where Pπ(St+n = s′|St = s) is the probability of arriving in state s′ after n steps when starting from
state s and following policy π. We note λ-SR is equivalent to the successor representation (SR) when
λ = 1 [1]:

M(s, s′) = (I − γPπ)−1(s, s′) =

∞∑
n=0

γnPπ(Sn = s′|S0 = s) (6)

2

3.1 Relationship to the lambda-return

We write the λ-return error of Eq.4 in expectation:

E[Gλt − vθ(s)|St = s] = E

[∞∑
k=0

(λγ)k δθ(St+k)

∣∣∣∣St = s

]
, (7)

=

∞∑
k=0

∑
s′

(λγ)kPπ(St+k = s′|St = s) E[δθ(s
′)], (8)

=
∑
s′

E[δθ(s
′)]

∞∑
k=0

(λγ)kPπ(St+k = s′|St = s), (9)

=
∑
s′

mπ(s, s′) E[δθ(s
′)], [definition of mπ] (10)

= EQ
[
m(S, S′)

Q(S′)
E[δθ(S

′)]

∣∣∣∣S = s

]
, (11)

where E[δθ(s
′)] = E[δθ(St+k)|St+k = s′] =

∑
s′′ Pπ(s′′|s′)[r(s′′) + γvθ(s

′′)] − vθ(s
′) is the

expected one-step TD error from state s′ following policy π, which works via the Markov property
and can be estimated as long as we have on-policy transitions (note we sub-scripted with θ to make
clear that the expected one-step TD error will depend on the model parameters). With reference to
Eq.10, the error from λ-return in expectation can be factorized into the λ-SR (mπ), and the expected
error at each state of the MDP.

We refer to Eq.10 as the lambda successor return error (λ-SRE). We emphasize it is a quantity
independent of the value function parameterization, much like the λ-return is. That is, Eq.10 can
be used with any kind of parameterization of the value function. While the summation in Eq.10 is
typically intractable, equation 11 suggests a family of algorithms, as long as they define a sampling
distribution, Q, over the state space to allow for an unbiased estimate of the λ-SRE. For example, in
the case of uniform sampling of s′, the error at state s will be directly proportional to m(s, s′)δθ(s

′).

3.2 The offline lambda-SRE algorithm

As a proof of concept and for a fair comparison with the offline λ-return algorithm, we propose an
offline algorithm using states sampled only from a single episode of on-policy trajectory. We note
that λ-SRE does not need to be an offline algorithm, but our main hypothesis is that simply having
the λ-SRE (regardless of its implementation detail) is better than using λ-return, specifically by
removing the trajectory dependence of λ-return via factoring out the entire time component into the
λ-SR [1], which we hypothesize reduces trajectory variance (at the potential cost of increased bias
in using mπ). Specifically, we use the on-policy distribution as Q to approximate Eq.11 without
correcting for the frequency of states encountered. This is a naive approach, albeit we found that
it worked reasonably well in the restricted set of empirical studies we performed. We leave the
development of more principled methods of correcting the return for future work. This gives rise to
our offline λ-SRE algorithm (Algorithm 1).

Note algorithm 1 is independent of the value function parameterization θ as long as we can compute
∂vθ(st)/∂θ (e.g. via backpropagation in a neural network), and assuming that we can learn (or are
given) a λ-SR function mπ (Alg. 1, line 5).

3.3 Learning the λ-SR

We now examine the question of learning the λ-SR. Similar to the successor representation, λ-SR has
a Bellman form:

mπ(st, s
′) = Pπ(S0 = s′|S0 = s) + (λγ)Eπ [mπ(st+1, s

′)] . (12)

Therefore in theory we can learn it using any RL methods [1, 16]. However, we note that learning mπ

in the functional approximation (non-tabular) case is non-trivial. We discuss this further in the future
works section below. For now, we use a tabular algorithm for learning mπ for line 5 of Algo.1. We
note how to best do SR learning is not the focus of this work (but rather that it is beneficial to learn

3

Algorithm 1: Offline λ-SRE algorithm using single episode samples
1 Given: value function vθ with parameter θ;
2 Given: the λ-SR function, mπ(·, ·)→ R and a way to learn it;
3 while repeat episodes forever do
4 Collect end-of-episode on-policy trajectory τπ = (s0, a0, r1, s1, ..., rT);
5 Update λ-SR function, mπ ;
6 for t← 0, ..., T − 1 do
7 δt = rt+1 + γvθ(st+1)− vθ(st)
8 end
9 for t← 0, ..., T − 1 do

10 ∆θ =
[

1
T−t

∑T−1
k=t mπ(st, sk)δk

]
∂vθ(st)
∂θ ;

11 θ ← θ + α∆θ ;
12 end
13 end

+0 s01 ... s09 s10 s11 ... s19 +1

Figure 1: The 19-state random chain. Agent start in the centre and transition randomly to adjacent
states until reaching the end to receive the indicated reward

this quantity), so we trivially adopt the tabular update algorithm from [14], providing it in Appendix
A.1 for completeness.

4 Experiments

For our experiments, we focus on the tabular setting as a proof-of-concept for λ-SRE, as it allows for
tractable computation of mπ and for us to easily solve for the true values of the MDP to compare
against the agents’ estimates. We evaluate the algorithm on the canonical 19 states random chain task
(Fig.1, also see [18], Figure 12.3). We average over 50 seeds for all experiments.

4.1 Policy Evaluation

We compare all algorithms in the offline, on-policy setting with access to the full trajectory of the
most recent episode. We compare three algorithms learning from scratch: (i) offline lambda return,
(ii) our offline λ-SRE, and (iii) a SR algorithm with decoupled SR and reward representations. We
give the SR algorithm the true reward function such that it only needs to learn the SR matrix. Despite
this, the SR algorithm had a large (> 1) error. We therefore excluded it from figure 2.

Figure 2: Value root mean squared error (RMSE) at the end of the 10-th episode. Left: offline
λ-return. Centre: offline λ-SRE (given true mπ), Right: offline λ-SRE (concurrently learned mπ).

We see the λ-SRE agent performs similarly whether the λ-SR matrix is given or learned from scratch
(Fig.2, centre and right), albeit the concurrently learned λ-SR agent shows more instability across the
learning rates. Both λ-SRE algorithms consistently out-perform the traditional λ-return algorithm

4

(Fig.2, left) while having access to the exactly same information. Figure 3 further demonstrates this
by plotting the 100 episodes learning curves for the three algorithms with best parameter settings.

Figure 3: Value root mean squared error (RMSE), 100 episodes of training (log scale)

4.2 Successor-like representations

Having shown the benefit of using λ-SRE, we turn to the representation learned. We compare the
learning between the λ-SR and the SR (given the ground truth reward function) directly by setting
λ = 1 for the λ-SRE agent such that both agents are learning identical SR matrices.

Figure 4: Root mean square error (RMSE) of the value function and successor matrix. Left: value
function error over training. Middle: successor matrix error over training. Right: correlation of value
function error with successor matrix error.

We observe that while the successor matrix error is identical for both algorithms throughout training
(Fig.4, middle), the λ-SRE agent converges much more quickly than the SR agent (Fig.4, left). We
also see that the λ-SRE agent is robust to a much higher successor matrix error while the SR agent
requires a highly accurate successor matrix for good value prediction (Fig.4, right).

5 Related Work

The closest work to ours is Source Traces [20], which is a "backward view" version of λ-SRE. While
we update a current value function by a future error, ∆v(st) =

∑
s′ m(st, s

′)δθ(s
′) (tabular update),

[20] updates past value functions using the present TD error: ∆v(s′) = m(s′, st)δ(st) ∀s′. The
trace perspective is explored further in [21]. More generally, the SR is a versatile representation that
was proposed for state generalization [1], has been applied to transfer [13, 22], exploration [14], and
more generally for uncovering structures in the environment [23, 15].

6 Discussion

6.1 The λ successor return error

Consider the tabular successor representation matrix M ∈ R|S|×|S|. Each row, Mi,, is the SR for
state i, representing the total future (discounted) visitations to all other states [1]. We can similarly
view the SR as the degree of "contribution" from state i to all other states. Consequently, the expected
error received at state i from other states is proportional to its successor representation. Interestingly,
we can also view the matrix columns, M,j , as how error at state j should be distributed to all other
states - this is known as the ideal source trace and explored extensively in [20].

5

In λ-return, the λ term gives us additional flexibility to tune how much importance we wish to assign
to future errors, which is expressed via the λ-SR matrix, m. Similar to how the value is the expected
discounted sum of future (instantaneous) rewards, the λ-return error is the discounted sum of future
(one-step) errors (Eq.4). It is perhaps unsurprising that just as one can compute the value for a state
in one step using the SR and rewards, we can compute the expected λ-return error in one step using
the λ-SR and TD errors. We can interpret the λ-successor return similarly to the λ-return. In the case
of λ = 0, we have the lambda successor matrix m = I, meaning we only care about the immediate
TD errors and do TD(0). In the case of λ = 1 we recover the successor representation (m = M),
weighing future errors proportional to their actual (γ-discounted) occupancy.

We note that the γ term in SR is behaviourally relevant: different γ can result in different levels of
myopia. Unlike γ dependent processes like SR learning, the λ term is a purely learning parameter,
and we are free to tune the discounting freely in λ-SR without changing the policy myopia. It is
interesting to observe that lower λ tends to perform better in the λ-SRE agent as compared to the
λ-return agent (Fig.2), potentially pointing to lower λ resulting in a more stable learning problem.

6.2 Neuroscience

We propose a relationship between hippocampal representation [2, 5, 7, 8, 9], and the hippocampus
as a system for fast learning (through replay [24, 25, 26], complementary learning [27, 28], and/or
episodic control [29, 30, 31]). Through the λ-successor representation, we demonstrate a represen-
tation to support fast learning (of a value function) through better credit assignment. Notably, the
physiological evidence supporting place fields as successor representations equally support the λ-SR
hypothesis (as SR can be seen as a special case of λ-SR). We further speculate that learning the
value function through λ-SRE naturally fit with methods such as experience replay (or a model),
specifically through the need to sample the state space to estimate Eq.11. It may be interesting to
re-interpret hippocampal replay data in light of λ-SRE.

We reiterate a small but important nuance between the traditional SR and λ-SR: SR is a direct
(factorized) representation of the value function, while λ-SR weighs the TD errors to update a
(separate) value function. We demonstrate through simulations that the latter can result in both
faster learning and is more robust to imperfections in the learning process - a potentially desirable
biological property that complements the strength of the traditional SR (e.g. for transfer). Subscribing
to the λ-SR as a model for place fields, we would expect place cells to be important during learning.
Some works indeed hint at this, such as the transient involvement of the dorsal hippocampus for
action acquisition [32]; and dopamine release (a quantity typically associated with the one-step TD
error [33]) in the dorsal hippocampus promoting spatial learning [34]. Future experiments can help
delineate the interactions between reward prediction error, place fields, and learning speed, through
the lens of λ-SRE.

6.3 Future work

We identify two main limitations to the current work: (i) proposing a sampling distribution, Q, in
Eq.11; and (ii) having a principled method of learning the λ-SR function, mπ in high dimensional
feature spaces. Point (i) is well suited to be combined with an experience replay buffer, and/or a
(generative) model of states and state transitions. On the other hand, point (ii) is much more difficult,
in particular to calcualte the Pπ(S0 = s′|S0 = s) term of Eq.12. While heuristic methods can be
used to estimate the proximity of features, it is unclear currently how this can be done in a principled
way. It may be possible to explore a factorized form of the λ-SRE to allow the use of successor
features [17, 13], and in general this is a promising direction for future research, as the biological
evidence also points to such "successor-like" representations being present in the brain, which works
exclusively in high-dimensional, partially observable settings.

6.4 Conclusion

We showed an interesting connection between SR - a representation typically used for transfer, and
λ-return - a quantity for temporal credit assignment. We show our method works in tabular settings
and complements the current neuroscientific theories and observations, demonstrating its potential to
be further investigated for future research at the intersection of biological and artificial RL.

6

Broader Impact

Our results are mainly theoretical, providing a connection between two theoretical concepts in
reinforcement learning: the successor representation and the λ-return. We hope our work can improve
current reinforcement learning algorithms, as well as theories for neuroscience that let us better
understand the brain. We note we are contributing to advancement of reinforcement learning as a
whole, and the potential creation of autonomous intelligence agents. To this larger scope, we are
mindful that should this work become more practically applied to real world situations, we take into
consideration the biases of real world data-sets and data collection processes. Furthermore, we are
mindful to minimize the usage of our algorithms for poor intents, such as in military settings.

Acknowledgments and Disclosure of Funding

This work is generally supported by the NSERC master’s scholarship, FRQNT master’s research
scholarship, and the UNIQUE Healthy Brains for Healthy Lives excellence scholarship. We are
very grateful of various members of Mila for their insightful discussion on reinforcement learning,
neuroscience, and general helpfulness: Annik Carson, Surya Penmetsa, Colleen Gillon, Arna Ghosh,
Mandana Samiei, and Emmanuel Bengio. We would also like to thank Leo Cheong for his insights
on the rodent experimental paradigm. Finally, we would like to thank the reviewers for their very
constructive feedback.

References
[1] Peter Dayan. Improving generalization for temporal difference learning: The successor repre-

sentation. Neural Computation, 5(4):613–624, 1993.

[2] John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map: Preliminary
evidence from unit activity in the freely-moving rat. Brain research, 1971.

[3] Ida Momennejad, Evan M Russek, Jin H Cheong, Matthew M Botvinick, Nathaniel Douglass
Daw, and Samuel J Gershman. The successor representation in human reinforcement learning.
Nature Human Behaviour, 1(9):680–692, 2017.

[4] Samuel J Gershman. The successor representation: its computational logic and neural substrates.
Journal of Neuroscience, 38(33):7193–7200, 2018.

[5] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as
a predictive map. Nature neuroscience, 20(11):1643, 2017.

[6] Ida Momennejad. Learning structures: Predictive representations, replay, and generalization.
Current Opinion in Behavioral Sciences, 32:155–166, 2020.

[7] Mayank R Mehta, Michael C Quirk, and Matthew A Wilson. Experience-dependent asymmetric
shape of hippocampal receptive fields. Neuron, 25(3):707–715, 2000.

[8] Alice Alvernhe, Etienne Save, and Bruno Poucet. Local remapping of place cell firing in the
tolman detour task. European Journal of Neuroscience, 33(9):1696–1705, 2011.

[9] Stig A Hollup, Sturla Molden, James G Donnett, May-Britt Moser, and Edvard I Moser.
Accumulation of hippocampal place fields at the goal location in an annular watermaze task.
Journal of Neuroscience, 21(5):1635–1644, 2001.

[10] Edward Chace Tolman and Charles H Honzik. Introduction and removal of reward, and maze
performance in rats. University of California publications in psychology, 1930.

[11] Samuel J Gershman. Predicting the past, remembering the future. Current opinion in behavioral
sciences, 17:7–13, 2017.

[12] Ida Momennejad and Marc W Howard. Predicting the future with multi-scale successor
representations. BioRxiv, page 449470, 2018.

7

[13] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. In Advances in
neural information processing systems, pages 4055–4065, 2017.

[14] Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with
the successor representation. arXiv preprint arXiv:1807.11622, 2018.

[15] Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and
Murray Campbell. Eigenoption discovery through the deep successor representation. arXiv
preprint arXiv:1710.11089, 2017.

[16] Lisa M White. Temporal difference learning: eligibility traces and the successor representation
for actions. Citeseer, 1996.

[17] Lucas Lehnert, Stefanie Tellex, and Michael L Littman. Advantages and limitations of using
successor features for transfer in reinforcement learning. arXiv preprint arXiv:1708.00102,
2017.

[18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[19] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. arXiv
preprint arXiv:2003.13350, 2020.

[20] Silviu Pitis. Source traces for temporal difference learning. arXiv preprint arXiv:1902.02907,
2019.

[21] Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, and
Diana Borsa. Expected eligibility traces. arXiv preprint arXiv:2007.01839, 2020.

[22] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard. Deep
reinforcement learning with successor features for navigation across similar environments. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2371–2378. IEEE, 2017.

[23] Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

[24] Anoopum S Gupta, Matthijs AA van der Meer, David S Touretzky, and A David Redish.
Hippocampal replay is not a simple function of experience. Neuron, 65(5):695–705, 2010.

[25] Marcelo G Mattar and Nathaniel D Daw. Prioritized memory access explains planning and
hippocampal replay. Nature neuroscience, 21(11):1609–1617, 2018.

[26] Ida Momennejad, A Ross Otto, Nathaniel D Daw, and Kenneth A Norman. Offline replay
supports planning in human reinforcement learning. Elife, 7:e32548, 2018.

[27] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are comple-
mentary learning systems in the hippocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory. Psychological review, 102(3):419,
1995.

[28] Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do
intelligent agents need? complementary learning systems theory updated. Trends in cognitive
sciences, 20(7):512–534, 2016.

[29] Máté Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. In
Advances in neural information processing systems, pages 889–896, 2008.

[30] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

8

[31] Samuel J Gershman and Nathaniel D Daw. Reinforcement learning and episodic memory in
humans and animals: an integrative framework. Annual review of psychology, 68:101–128,
2017.

[32] Laura A Bradfield, Beatrice K Leung, Susan Boldt, Sophia Liang, and Bernard W Balleine.
Goal-directed actions transiently depend on dorsal hippocampus. Nature Neuroscience, pages
1–4, 2020.

[33] Wolfram Schultz. Dopamine reward prediction error coding. Dialogues in clinical neuroscience,
18(1):23, 2016.

[34] Kimberly A Kempadoo, Eugene V Mosharov, Se Joon Choi, David Sulzer, and Eric R Kandel.
Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning
and memory. Proceedings of the National Academy of Sciences, 113(51):14835–14840, 2016.

9

A Appendix

A.1 Tabular algorithm for learning successor representation

Here we show the algorithm used to learn the λ-successor representation in a tabular setting. We
update at the end of episode to make it compatible with Algorithm 1.

Algorithm 2: Offline update for learning tabular λ-SR
1 Given tabular λ-SR matrix, mπ , of size |S| × |S|;
2 Given a on-policy trajectory of states from the latest episode: s0, s1, ..., sT−1;
3 for st where t← 0, ..., T − 1 do
4 while time allows do
5 Sample sk ∼ {s0, s1, ..., sT−1} from the trajectory randomly with replacement;
6 ∆m(st, sk)← 1{st = sk}+ (γλ)mπ(st+1, sk)−mπ(st, sk) ;
7 m(st, sk)← m(st, sk) + α∆m(st, sk) ;
8 end
9 end

For all experiments, in the inner loop of algorithm 2, we sample only n ≈ (0.05 · T) number of
states (sk) (T is trajectory length). While larger samples can help with faster learning, small samples
worked well in our task, and had better computational efficiency.

We note that in the tabular case, the successor representation is upper-bounded by mπ(s, s′) ≤∑∞
n=0(λγ)n = 1

1−γλ , ∀s, s′. As a heuristic we therefore initialize the successor matrix tominit(·, ·) =

0.5 · 1
1−min(γλ,0.95) . The 0.5 constant is akin to saying any state has a 0.5 chance of reaching any

other states at any times, and the min is used to prevent the values from blowing up to infinity. We
emphasize this is a rough heuristic we used in our experiments and we did not explore extensively
the effect of initialization on learning the tabular SR matrix as this is not the main focus of this work.

A.2 Experiment details

For all random chain experiments, we initialize the tabular value function (for the offline λ-return
and the λ-SRE algorithms which contains an explicitely learned value function) to 0.5, the average
value of the random chance MDP. This follows from the method used in Chapter 12 of [18]. For all
experiments we run 50 seeds and average over them for the results shown. Error bars denote 95%
confidence interval (standard error).

Section 4.1 Experiments Again following the set-up in [18], we use no discounting (γ = 1) and
evaluate the root mean squared error (RMSE) of each agent’s value function after 10 episodes’ worth
of experience. We also use the same stepsize for all learning procedures (e.g. for value learning and
for SR learning in the λ-SRE agent).

For the SR (with decoupled reward function) agent, we initially attempted to learn both the SR matrix
and reward function from the on-policy distribution (as the reward function can be learned with
supervised learning). However, we noticed in exploratory experiments that the learning rate needs to
be set differently, specifically the reward learning seem to prefer a very small learning rate, while
the SR learning preferred larger ones. Using the same stepsizes resulted in either a complete lack
of learning or divergence. Thus, for simplicity, we opted to just give the SR agent the true reward
function and let it learn only the SR matrix.

We also show the 100 episode learning curve for the SR agent exclusively here. Combining Fig.3
and Fig.5, we observe that λ-SRE has lower value error as compared to the optimal λ-return at all
points of learning. The failure of SR to learn might be due to multiple reasons. Initialization of the
SR matrix plays a potential role, though this is not a problem with the λ-SRE. The undiscounted case
may also be difficult to learn in as future occupancy would have high value. This may also be due to
small errors in the SR matrix resulting in large errors in the value function [16].

Section 4.2 experiments Here we used learning rate of α = 0.1 for all experiments and run for
3000 episodes, with discounting γ = 0.8 (which was chosen to make the learning process easier for

10

Figure 5: Value root mean squared error (RMSE), SR agent (with true reward function given), 100
episodes of training

the SR agent as high γ may result in more unstable learning), and similarly averaging over 50 seeds.
Note that we learn from scratch the SR matrix for both the λ-SRE and SR algorithms here, rather
than using a pre-computed SR matrix.

A.3 Further comparison with Source Traces

Comparing our current work to [20], both works require learning the SR function mπ, which is a
mutual weaknesses. However, even if mπ can be learned, the backward view has two additional
weaknesses for non-tabular cases: (i) it assumes access to the entire state space; and (ii) it is unclear
how to interpret the SR function as an eligibility trace, as mπ maps to a scalar, while (non-tabular)
eligibility traces require one to keep track of all model parameters. We note this latter perspective is
explored further in [21], which can be viewed as "back-in-time" successor features for linear value
functions.

11

	Introduction
	Background
	The Lambda Successor Return
	Relationship to the lambda-return
	The offline lambda-SRE algorithm
	Learning the -SR

	Experiments
	Policy Evaluation
	Successor-like representations

	Related Work
	Discussion
	The successor return error
	Neuroscience
	Future work
	Conclusion

	Appendix
	Tabular algorithm for learning successor representation
	Experiment details
	Further comparison with Source Traces

