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Our hypothesis is that machine learning (ML) analysis of whole exome sequencing (WES) data can

be used to identify individuals at high risk for schizophrenia (SCZ). This study applies ML to WES

data from 2,545 individuals with SCZ and 2,545 unaffected individuals, accessed via the database

of genotypes and phenotypes (dbGaP). Single nucleotide variants and small insertions and dele-

tions were annotated by ANNOVAR using the reference genome hg19/GRCh37. Rare (predicted

functional) variants with a minor allele frequency �1% and genotype quality �90 including

missense, frameshift, stop gain, stop loss, intronic, and exonic splicing variants were selected. A file

containing all cases and controls, the names of genes with variants meeting our criteria, and the

number of variants per gene for each individual, was used for ML analysis. The supervised

machine-learning algorithm used the patterns of variants observed in the different genes to deter-

mine which subset of genes can best predict that an individual is affected. Seventy percent of the

data was used to train the algorithm and the remaining 30% of data (n51,526) was used to

evaluate its efficiency. The supervised ML algorithm, gradient boosted trees with regularization

(eXtreme Gradient Boosting implementation) was the best performing algorithm yielding promising

results (accuracy: 85.7%, specificity: 86.6%, sensitivity: 84.9%, area under the receiver-operator

characteristic curve: 0.95). The top 50 features (genes) of the algorithm were analyzed using bioin-

formatics resources for new insights about the pathophysiology of SCZ. This manuscript presents

a novel predictor which could potentially enable studies exploring disease-modifying intervention

in the early stages of the disease.
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1 | INTRODUCTION

Schizophrenia (SCZ) is a severe mental illness with an estimated

incidence of �1% and a heritability of �80% (Bassett et al., 1995).

However, classic linkage and association studies have not been very

successful in identifying major susceptibility loci (Altm€uller et al., 2001;

Cardno & Gottesman, 2000; DeLisi et al., 2002; Risch, 2000; Sullivan,

Kendler, & Neale, 2003). With the development of new ‘omics technol-

ogies’, there are new opportunities to better understand the patho-

physiology of SCZ. Recently, several whole exome sequencing (WES)

studies have been performed in patients with SCZ, allowing simultane-

ous screening for variants in the coding portion of all genes in a

patient’s genome.

One interesting finding highlighted by several WES studies is the

importance of de novo mutation (DNM) in individuals with SCZ and

other neuropsychiatric diseases (Girard et al., 2011; Li et al., 2016; Xu,

Ionita-Laza, et al., 2012). For instance, Li et al. (2016) reported a higher

prevalence of DNMs in probands across four neuropsychiatric disor-

ders: SCZ, autism spectrum disorder (ASD), encephalopathy (EE), and

intellectual disability (ID). This study retrieved rare DNMs from 3,555

trios across the four neuropsychiatric disorders targeted, in addition to

unaffected siblings (control), from 36 studies using WES or whole

genome sequencing. The 3,334 DNMs selected had a minor allele

frequency <0.1% and were exonic, loss of function (LOF), variants.

These variants were analyzed for an association with each of the four

targeted diseases and a higher prevalence of DNMs was noted in the
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probands of all four disorders compared to controls. After transmission

and de novo association analysis, a total of 764 potential candidate

genes with P-value generated by the TADA program (PTADA) �0.05

were identified in the four disorders: 277 for SCZ, 330 genes for ASD,

109 for EE, and 106 for ID. Fifty-three candidate genes were shown to

be associated with more than one disorder, suggesting a possibly

shared genetic etiology underlying these four disorders. In addition,

among the 764 candidate genes, 8 genes harbored recurrent DNMs in

1,024 SCZ trios, 12 from 1,038 ASD trios, 8 from 291 EE trios, and 15

from 220 ID trios. No single gene was found to harbor recurrent

extreme DNMs in 982 controls.

On top of the role of DNMs, WES studies have emphasized the

importance of inherited functional variants in SCZ. Takata et al. (2014)

focused on LOF variants in WES data from patients with SCZ (n5231)

and control (n534) trios. Both inherited and de novo variants were

included in this analysis. Two LOF variants were identified in SETD1A,

a subunit of the histone methyltransferase protein complex. This is of

particular interest because there is evidence that disruption of chroma-

tin modification, specifically histone H3 methylation, is linked with the

pathogenesis of SCZ. Transmission pattern analyses in this study

revealed that LOF variants are more likely to be transmitted to affected

individuals than controls, especially for private LOF variants in genes

intolerant to functional genetic variation. Similarly, Singh et al. (2016)

analyzed the burden of rare LOF variants (with minor allele frequency

<0.1%) on WES data of 4,264 SCZ cases, 9,343 controls, and 1,077

published trios. SETD1A was again found to be associated with SCZ

risk (Singh et al., 2016). Another WES study, performed by Genovese

et al. (2016), used data from 4,946 Swedish patients with SCZ and

identified rare protein damaging variants that were present in single

individuals. These variants were not present in the Exome Aggregation

Consortium (consisting of 45,376 individuals, after excluding the sub-

jects from this study and other subjects ascertained for psychiatric dis-

orders). In addition, the frequency of these variants in the SCZ cases

was significantly increased relative to 6,242 unrelated Swedish con-

trols. Furthermore, the elevated rate of these rare variants in individu-

als affected with SCZ was found to be several times greater than the

rate of DNMs. This suggests that the observed significant excess of

variants in individuals with SCZ is mostly inherited. At the pathophysi-

ology level, given these variants were concentrated in neuronally

expressed genes, whose ribonucleic acids (RNAs) interact with synapti-

cally localized proteins, this study provided additional evidence for the

role of synaptic dysfunction in the pathogenesis of SCZ.

In conclusion, these studies have advanced our understanding of

the molecular etiology of SCZ and emphasized the role of both DNM

and inherited variants in its pathogenesis. However, their focus has not

been on identifying a predictor for individuals at high risk for SCZ and

testing its accuracy using a different test sample. The quantity of WES

data is amenable to machine learning (ML), a method of data analysis

that automates analytical model building and constructs algorithms that

iteratively learn from data to optimize data-based predictions. Our

hypothesis is that ML analysis of WES data (both inherited and DNM

functional variants) can be used to identify individuals at high risk for

SCZ. If true, this could potentially enable disease-modifying clinical tri-

als in the early stages of the disease.

2 | METHODS

2.1 | Exome data source and annotation

This study was approved by the research ethics board of the McGill

University Health Centre. WES data for 2,545 individuals with SCZ and

2,545 unaffected individuals were accessed via the database of

genotypes and phenotypes (dbGaP), study phs000473.v1.p1. The

downloaded dataset includes sample information, including a numerical

identifier of each individual, affection status, and vcf files indicating the

variants in all genes of the exome for each individual in the dataset.

The median age of cases in this study was 54 (interquartile range545

to 62 years old), while the median age of controls was 57 (interquartile

range548 to 65 years old). Older controls were selected to ensure

they were properly classified because they had greater time at risk for

psychiatric hospitalizations. Cases were selected if they were (1) hospi-

talized two or more times with a discharge diagnosis of SCZ, (2) 18

years old or older, and (3) both parents were born in Scandinavia.

Controls were randomly selected from the Swedish population registry

and were not reported to be matched to cases based on age or sex.

They were included in the study if they were (1) never hospitalized for

SCZ or bipolar disorder, (2) 18 years or older and (3) both parents were

born in Scandinavia.

Single nucleotide variants and small insertions and deletions were

annotated by ANNOVAR using the reference genome hg19/GRCh37.

The variants were segregated using an in-house program; affected and

unaffected individuals were processed separately. Rare (predicted func-

tional) variants with a minor allele frequency �1% and genotype quality

�90 including missense, frameshift, stop gain, stop loss, intronic, and

exonic splicing variants in the whole exome were selected. The output

data consisted of a list of variants, the gene where the variant occurs,

and the individuals with the variant. If a position included a variant that

did not meet our filtering criteria, the position was considered wildtype.

The format of the list of selected variants was rearranged in a tabular

format indicating the sample ID, the gender and the total number of

variants per gene meeting our criteria for each individual. If an individ-

ual did not have a single variant meeting our criteria in a specific gene,

the gene was assigned a zero (i.e., no variants meeting our criteria) for

that individual. A file containing all individuals (cases and controls), the

names of genes with variants meeting our criteria, and the number of

variants per gene for each individual, was used for ML analysis.

2.2 | Machine learning

The supervised machine-learning algorithm used the patterns of

variants observed in the different genes to determine which subset of

genes can best predict that an individual is affected. Only genes with at

least one variant in five or more individuals (either affected or

unaffected) were included in the analysis. As a data preprocessing step,

feature values were standardized to have mean value of zero and
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standard deviation 1. In addition, we filtered out features in our data

showing more than 90% Pearson correlation. Features were then

selected in combination of lasso regularized (L1) logistic regression,

random forest, and extreme gradient boosting algorithms’ implicit

feature selection. As a result, the number of relevant features for

prediction purposes came out to 1,155 down from 17,138 features. To

prevent overfitting, a regularized implementation of the gradient boost-

ing algorithm called eXtreme Gradient Boosting (XGBoost) (Chen &

Guestrin, 2016) was used. The implementation of the XGBoost

algorithm was done in the R programing language (Team RC, 2016) in

XGBoost library (Chen & He, 2015). The dataset was split into 70% for

training and 30% testing purposes. Since the distribution of case and

control in our dataset is balanced, accuracy (i.e., number of correct

predictions/total number of predictions) is a well-defined performance

indicator. The performance of each algorithm was documented and the

genes of highest importance across different ML methods compared.

(For more details regarding the ML approach, please refer to “Support-

ing Information Methods 1.”)

2.3 | Literature review and pathway analysis

The top 50 genes (by relative importance values of features defining

the best performing algorithm) were identified and analyzed further.

Database for annotation, visualization, and integration discovery

(DAVID) (Dennis et al., 2003; Huang, Sherman, & Lempicki, 2008,

2009) was used to search for pathways overrepresentation among

these genes. (For more details regarding the analysis with DAVID,

please refer to “Supporting Information Methods 2.”)

3 | RESULTS

The supervised ML algorithm, gradient boosted trees (GBTs) with regu-

larization, (XGBoost implementation) yielded the highest accuracy of

85.7% in predicting the occurrence of SCZ, outperforming in all catego-

ries other traditional classifiers such as SVMs, Random Forests, and

Logistic Regression (Table 1). The p value of 9.11 3 102179 indicates

that XGBoost algorithm is performing better than a random predictor

simply predicting the majority class. XGBoost achieved the highest

specificity (86.6%), sensitivity (84.9%), precision (86.9%), and Recall

(84.9%). We also used the F1 score to compare the predictor perform-

ance as it considers both the precision and recall to construct the

metric. The XGBoost predictor achieved the highest F1 score (85.9%).

The performance of the algorithm on the test data (n51,526) can be

summarized in Table 1 and the confusion matrix depicted in Table 2.

A receiver-operator characteristic (ROC) curve was plotted (Figure 1)

and the area under the ROC curve (AUC) was 0.95, indicating a high

accuracy of the test to correctly distinguish patients with SCZ from

controls (of note, AUC51 indicates a perfectly discriminating test).

The top 25 features (genes) according to each method are summarized

in Figure 2. It is clear from the graph that the majority of the top 25

genes are shared across the different feature selection methods.

The relative importance of the 50 most important genes for the

best performing algorithm, XGBoost, is graphically depicted in Figure 3.

In addition, the relative importance, OMIM number, and function of

each of these genes are summarized in Supporting Information Table 1.

Analysis of the top 50 genes using DAVID, showed an overrepresenta-

tion of the KEGG pathway termed “MAPK signaling pathway”

(hsa04010) (Kanehisa et al., 2017) based on genes RASGRP2, RASGRP3,

RASGRP4, and MYC, which were present in our list. The JAK-STAT sig-

naling pathway (IL21R, IL21, andMYC genes) was also overrepresented.

A subsequent search was performed using only genes with relative

importance higher than 0.4, and the cGMP-PKG signaling pathway, cal-

cium ion signaling pathway (PLN and SLC25A4 genes) were highlighted.

Certain gene entries were not identified in DAVID as their role and

functional annotations in the curated pathways in DAVID were incom-

plete (Huang et al., 2008, 2009).

Of note, some of the important genes from Supporting Information

Table 1 exhibited mutations only in controls of our dataset (see

Supporting Information Table 2).

TABLE 1 Algorithms comparison table

Algorithm Accuracy (%) Sn (%) Sp (%) Precision (%) Recall (%) F1 Accuracy p value

XGBoost 85.7 84.9 86.6 86.9 84.9 85.9 9.11E-179

L1.Logistic 74.6 72.0 77.3 76.0 72.0 73.9 2.87E-86

SVM 70.7 70.8 70.6 70.5 70.8 70.7 1.18E-59

Random.
Forest

81.7 82.0 81.3 81.1 82.0 81.6 2.57E-141

Sn5 sensitivity; Sp5 specificity. Summary of the performance of the predictors used. Across these methods, XGBoost clearly outperformed the other
methods in all categories.

TABLE 2 The performance of the best performing algorithm on the
test data

n51526 Predicted: unaffected Predicted: affected

Actual: control
(unaffected)

TN5645 FP5100

Actual: case
(affected)

FN5118 TP5 663

FN5 false negative; FP5 false positive; TN5 true negative; TP, true
positive. The performance of the best performing algorithm on the test
data can be summarized in the confusion matrix depicted above. The
best supervised machine-learning algorithm was gradient boosted trees
(GBTs) with regularization, which had 85.7% accuracy, 84.5% sensitivity,
and 86.9% specificity.
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The complete list of genes defining the best performing algorithm

along with their relative importance to making correct prediction is

listed in Supporting Information Table 3. Of note, Gain implies improve-

ment in accuracy brought by a particular feature in splits of the trees in

the model. Cover measures the relative number of observations concerning a feature, and frequency measures the relative times a fea-

ture was used in tree splits of the model. The Gain metric is the best

indicator of variable importance in prediction accuracy, and so this

table is sorted in decreasing Gain (Importance) value.

4 | DISCUSSION

We have presented a novel way for predicting individuals at high risk

for SCZ based on exome data. The supervised ML algorithm, GBTs

with regularization, yielded the highest accuracy of 85.7% in predicting

the occurrence of SCZ, outperforming other traditional classifiers such

as SVMs, Random Forests, and Logistic Regression. This algorithm was

shown to provide advantages as demonstrated by higher F1 score

(85.9%) when compared with the other widely used prediction

algorithms. In brief, GBT is a tree-based ensemble method, which builds

powerful predictive algorithms by training a series of tree-based classi-

fiers, each attempting to correct the mistakes of the previous model,

thus, iteratively improving the prediction performance of its weak

(base) learners. It is important to emphasize that the evaluation of the

prediction algorithms, employed a testing sample which was never

used in training or feature selection steps. This method of evaluation

resembles the expected outcomes in an application (clinical and

research) environment, which can be considered encouraging given the

relatively good performance of the algorithm (specificity: 86.6%, sensi-

tivity: 84.9%, AUC: 0.95) for the testing set.

Looking inside the XGBoost algorithm, it should be highlighted

that it only uses 372 features (genes) out of all the available features to

make predictions. If we look back, we started with �18,000 genes hav-

ing at least one mutation in either cases or controls, and based on our

approach only 372 of them are relevant in making �86% accurate pre-

diction. The complete list of these 372 genes with their relative

FIGURE 2 The top 25 features (genes) according to each ML
method used. The top 25 features (genes) according to each
method are summarized in above. This graph illustrates that the
majority of top 25 genes are shared across the different feature
selection methods

FIGURE 1 ROC curve for the best performing algorithm,
XGBoost. A ROC curve is plotted with sensitivity values on the Y-
axis and the corresponding false-positive ratio (1—specificity) on
the X-axis. The AUC indicates the accuracy of a test for correctly
distinguishing patients with psychosis from controls, where
AUC51 indicates a perfectly discriminating test

FIGURE 3 The relative importance of top 50 features (genes) for
XGBoost algorithm. The relative importance of top 50 features
(genes) in determining the predictions for the best supervised
machine-learning algorithm, gradient boosted trees (GBTs) with

regularization can be seen in the plot above
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importance to making correct prediction is listed in Supporting Informa-

tion Table 3. It is clear from Figure 2 that the majority of top 25 genes

are shared across the different feature selection methods so looking a

bit closer at the genes and pathways involved may give us new clues

about the pathophysiology of SCZ.

When focusing on the top 50 genes of the XGBoost algorithm

(Supporting Information Table 1), several were found to have evidence

in the literature for a link with SCZ or play a role in neuropsychiatric

diseases. For example, GRP encodes gastrin-releasing peptide (GRP),

which is a mammalian neuropeptide and a homolog of the amphibian

peptide bombesin. GRP regulates neurogenesis and neuronal develop-

ment. In humans, GRP and bombesin like peptides (BLPs) bind prefer-

entially to the GRP receptor (GRPR). This facilitates GRPR mediated

signal transduction in the central nervous system, which plays a role in

synaptic plasticity, memory, social interactions, and feeding behavior

(Roesler & Schwartsmann, 2012). Studies using animal models have

reported potential links between disrupted GRPR signaling pathways

and psychosis (Kauer-Sant’Anna et al., 2007; Meller, Henriques,

Schwartsmann, & Roesler, 2004). GRPR is believed to interact with

other signaling pathways such as mitogen-activated protein kinase

(MAPK) signaling and cAMP/PKA signaling and play a role in hippocam-

pal memory formation (Roesler, Luft, et al., 2006). Mouse models of

SCZ show elevated hippocampal neurogenesis with reduced neuronal

maturity, which were reversed via GRP treatment, confirming GRP’s

role in these processes (Walton et al., 2014). In addition, SCZ patient

have been reported to have lower BLP levels (Gerner, van Kammen, &

Ninan, 1985; Meller et al., 2004). Hence, there are different lines of

evidence supporting the role of GRP in SCZ.

MYCBP2 is another gene used by our predictor. It encodes MYC-

binding protein 2, also known as protein associated with MYC (PAM),

one of the PHR proteins involved in axonal development, as well as, in

intracellular signaling pathways (Grill, Murphey, & Borgen, 2016). The

PHR proteins (including MYCBP2) may act as cellular signaling hubs

and their network dysregulation can lead to neurodevelopmental

disorders such as SCZ (Grill et al., 2016; Wojda, Salinska, & Kuznicki,

2003). In addition, Wojda et al. (2003) reported an increased

prevalence of autoantibodies that potentially target PAM and HSP60

in subjects with SCZ.

CNDP1 is also a gene with high relative importance in our predictor

and substantial evidence for a link with SCZ in the literature. It encodes

for carnosine dipeptidase 1 enzyme, which degrades carnosine and

homocarnosine, both of which are believed to have neuroprotective

and neurotransmitter functions in the brain (Teufel et al., 2003).

Maccarrone et al. (2013) performed a proteomics study on the CSF of

patients with MDD, BD, and SCZ compared to controls and found

CNDP1 to be one of the reliable biomarkers to distinguish between all

three neuropsychiatric disorders and controls.

Another gene that needs to be underlined is ELK3. Viana et al.

(2016) found a differentially methylated position in ELK3 to be associ-

ated with SCZ. A transcriptomic analysis study on gene networks and

blood biomarkers using methamphetamine-associated psychosis (a

model of SCZ), found ELK3 along with SINA3 to be top-scoring

biomarkers. SINA3 is known to be involved in the circadian clock

function and ELK3 was found to be co-expressed with SINA3, there-

fore suggesting its involvement in the circadian clock function too

(Breen et al., 2016). Of note, disrupted circadian clock functions and

sleep-wake cycles have been previously implicated in SCZ (Monti et al.,

2013; Niculescu et al., 2000). Finally, other genes included in the pre-

dictor described in our study, which have been reported to be signifi-

cantly differentially expressed in human subjects with SCZ or relevant

animal models, include ARL1 (Ib�a~nez et al., 2014), CAP1 (Wong et al.,

2005), GPRIN2 (Narayan et al., 2008), RASGRP3 (Arion, Horv�ath, Lewis,

& Mirnics, 2010), and CHI3L1 (Wojda et al., 2003; Zheng, Fu, Shen, &

Xu, 2007).

Interestingly, some genes listed as highly important with regard to

the XGBoost predictive algorithm showed variants, meeting our crite-

ria, only in the controls of our dataset (Supporting Information Table 2).

Several of these genes appear to have published evidence for a link

with SCZ or other neuropsychiatric disease. For example, mutations in

NDP can cause Norrie disease (OMIM #310600), a genetic condition

associated with psychosis. In addition, polymorphisms in NDP may be

risk factors for hallucinations and delusions in SCZ (Sun, Jayathilake,

Zhao, & Meltzer, 2012). Finally, norrin, a cysteine rich protein encoded

by the NDP gene, is known to activate the Wnt/beta-catenin pathway

(Xu, Li, et al., 2012), which has been found to be associated with SCZ

in genetic and postmortem studies (Cotter et al., 1998; Freyberg,

Ferrando, & Javitch, 2009; Lovestone, Killick, Di Forti, & Murray, 2007;

Miyaoka, Seno, & Ishino, 1999; Okerlund & Cheyette 2011; Yang et al.,

2003; Zandi et al., 2008). Another gene in this group, NEDD8, is

believed to be involved in proteolysis by the Ub-proteasome system

(Mori et al., 2005), which has been implicated in the pathophysiology

of SCZ (Rubio, Wood, Haroutunian, & Meador-Woodruff, 2013). Earlier

studies showed that disruption to the ubiquitin proteasome pathway is

one of the top pathways disrupted in SCZ (Bousman et al., 2010). In

additon, a gene expression study of the superior temporal gyrus of sub-

jects with SCZ found significantly altered expression of NEDD8 in SCZ

subjects (Bowden, Scott, & Tooney, 2008). Another gene of the predic-

tor, which only had variants in the control subjects of our study and

previous evidence of differential expression in patients with SCZ, is

CCK. A polymorphism in CCK has been associated with the presence of

hallucinations (Lenka, Arumugham, Christopher, & Pal, 2016) and the

receptor of CCK has been found to be associated with positive symp-

toms in SCZ (Zheng et al., 2012). There is also evidence suggesting that

CCK has a role in mediating neuronal gene expression and SCZ

(Hansen et al., 2008) via changes in signaling (Curley & Lewis, 2012;

Hashimoto et al., 2008) and the expression of transcription factors

related to circadian rhythm control, the misregulation of which has

been implicated in SCZ, as discussed above (Hansen et al., 2008; Monti

et al., 2013).

Analysis of the top 50 genes used by the best performing algo-

rithm, XGBoost, using DAVID software for pathway prediction, showed

that the MAPK signaling pathway (hsa04010) and JAK-STAT signaling

pathway (hsa04630) were overrepresented. MAPK-associated path-

ways are coupled with many neurotransmitter receptors and integrate

extracellular and intracellular stimuli including peptide growth factors,

cytokines, hormones, and various cellular stressors such as oxidative
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stress and endoplasmic reticulum stress stimuli. These signaling path-

ways regulate a variety of cellular activities including proliferation,

differentiation, survival, and death (Balu & Coyle, 2011; Crisafulli et al.,

2015; Funk et al., 2012; Kim & Choi, 2010; Kyosseva et al., 1999;

Perkins et al., 2007; Reichenberg, 2010; Sweatt, 2001; Walsh et al.,

2008). Disturbances in the MAPK signaling are believed to affect Ca21

homeostasis, neurotransmitter receptors, transcription factors, interac-

tions between different signaling pathways and other neuroplasticity-

related biological functions (Funk et al., 2012; Reichenberg, 2010;

Sweatt, 2001). Studies on rare structural variants in genes involved in

neurodevelopmental pathways (Walsh et al., 2008), microRNA expres-

sion (Perkins et al., 2007), and expression of proteins associated with

MAPK signaling (Funk et al., 2012) have shown that disrupted MAPK

signaling pathway is implicated in the pathophysiology of SCZ.

A search using only genes with relative importance higher than

0.4, showed that the cGMP-PKG signaling pathway (hsa04022) and

calcium ion signaling pathway (hsa04020) were overrepresented. cGMP

(cyclic guanosine monophosphate) is an intracellular, nucleotide second

messenger that facilitates the action of natriuretic peptides (NPs) and

nitric oxide (NO). cGMP signaling cascade is believed to play a role in

synaptic functional plasticity and neurogenesis leading to an increased

interest in cGMP associated pathways to find newer and better drug

targets to treat neuropsychiatric diseases, like SCZ, where compro-

mised neuroplasticity is believed to be important in their pathophysiol-

ogy (Halene & Siegel, 2007; Kleppisch & Feil, 2009; Menniti et al.,

2007; Schmidt et al., 2008; Shim et al., 2016; Reierson et al., 2011).

Calcium signaling plays an important role in regulating a variety of

neuronal processes such as neurotransmitter release, neuron excitabil-

ity, synaptic plasticity which are further responsible for learning and

memory (Wojda et al., 2008). Intracellular Ca21 dyshomeostasis and

disrupted signaling appears to be a common theme in cellular processes

affected in SCZ (Ripke et al., 2013), such as dopamine, glutamate,

g-aminobutyric acid, and serotonin neurotransmission, oxidative stress,

alterations in mitochondrial and cytosolic metabolism, dysregulation of

myelination, and deficiencies in growth factors (Gunduz-Bruce, 2009;

Howes & Kapur, 2009; Lewis & Moghaddam, 2006). A growing body

of literature links disturbances and abnormalities in intracellular signaling

pathways involving molecules such as MAPK (Balu & Coyle, 2011;

Crisafulli et al., 2015; Funk et al., 2012; Kim & Choi, 2010; Kyosseva

et al., 1999; Perkins et al., 2007; Reichenberg, 2010; Sweatt, 2001;

Walsh et al., 2008), cGMP (Halene & Siegel, 2007; Kleppisch & Feil,

2009; Menniti et al., 2007; Schmidt et al., 2008; Shim et al., 2016;

Reierson et al., 2011), and Ca21 signaling and homeostasis (Berridge,

2012, 2013, 2014; Bojarski et al., 2010; Forstner et al., 2017; Gunduz-

Bruce, 2009; Harrison, 2015; Howes & Kapur, 2009; Jimerson et al.,

1979; Lewis & Moghaddam, 2006; Mäki-Marttunen et al., 2016;

Purcell et al., 2014; Ripke et al., 2013; Schizophrenia Working Group of

the Psychiatric Genomics Consortium, 2014; Wojda et al., 2008) to

neuropsychiatric disorders such as SCZ.

It should be highlighted that the great majority of the important

genes had mutations in both cases and controls. Specifically, for each

of the 346 out of the 372 (93%) relatively more important genes, at

least 30% of individuals with mutations were cases and 30% were

controls. This is consistent with the literature supporting a polygenic

paradigm for SCZ, involving different susceptibility genes. Variants in

susceptibility genes can modify the risk for SCZ but no single variant is

sufficient to independently cause the disease.

4.1 | Possible interpretation in the context of the

threshold hypothesis

As discussed above, Genovese et al. (2016) showed that the frequency

of rare protein damaging variants was significantly increased in SCZ

cases relative to controls. The observed significant excess of variants in

individuals with SCZ were mostly inherited from unaffected parents

and LOF variants were more likely to be transmitted to affected indi-

viduals than controls, especially private LOF variants in genes intolerant

to functional genetic variation. The “threshold hypothesis” posits that

SCZ is manifested when an individual’s combined liability crosses over

a certain fixed threshold value (McGue, Gottesman, & Rao, 1983). We

postulate that affected individuals have randomly accumulated (mostly

inherited) genetic variants in a specific combination of SCZ susceptibil-

ity genes, which cooperatively increase one’s predisposition to SCZ.

This could be one possible explanation for the constant prevalence of

SCZ despite the reduced reproductive fitness of affected individuals,

but also for the observed high heritability of SCZ despite the absence

of major SCZ susceptibility loci. Published literature suggests that SCZ

is not manifested by mutations in a fixed network of susceptibility

genes but rather by mutations in networks of genes that can vary

across affected individuals in different populations (International Schiz-

ophrenia Consortium, 2008, 2009; Ripke et al., 2013). It is thus possible

that the predisposition of a child to be affected is mainly influenced by

the mutations that his/her parents, as a couple rather than individually,

carry on the corresponding susceptibility genes. An offspring who

inherits sufficient variants in one of the SCZ networks of genes will be

predisposed to SCZ. This mechanism of inheritance would lead to a

genetically heterogeneous population of patients with SCZ. However,

it would also imply that ML can be used to identify individuals at high

risk to develop the disease, as demonstrated by our study. In summary,

we do not believe that SCZ genes in our predictor can be separated in

susceptibility versus protective genes but rather hypothesize that the

role of each gene depends on the environmental and genomic back-

ground of the corresponding patient (e.g., the presence of copy number

variants [CNVs] or point mutations in other genes).

4.2 | Limitations

It is important to mention some limitations of the present study.

Given, we do not have access to the clinical characteristics of the

patients with SCZ in our analysis, we are not sure if this is a repre-

sentative group of patients in the general population and thus how

generalizable our findings are in other patients. At the same time,

studies often use performance measures (AUC, accuracy, sensitivity,

and specificity) based only on cross validation. In our case, by evalu-

ating the performance of the prediction model using an independent

testing set, albeit from the same population, we can estimate the
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true expected performance of the model when used in a clinical or

research environment for early identification of individuals at high

risk for SCZ. However, it is important to emphasize that the popula-

tion included in this analysis represents a select group of individuals

motivated to participate in research and may not represent the gen-

eral population.

5 | FUTURE DIRECTIONS AND
CONCLUSION

A genomic study by Pocklington et al. (2015), which focused on CNVs

in 11,355 cases and 16,416 controls, found that large, rare CNVs

(>100 kb, frequency <1%) in affected individuals are enriched for

genes involved in both GABAergic and glutamatergic neurotransmis-

sion. Likewise, a study focusing on genes differentially expressed in

patients with SCZ relative to controls highlighted different pathways,

including transmission across chemical synapses, postsynaptic mem-

brane, voltage-gated potassium channel complexes, and axon guidance

(Fromer et al., 2016). This study used sequenced RNA from dorsolateral

prefrontal cortex of subjects with SCZ (N5258) and control subjects

(N5279), available through the CommonMind Consortium dataset. A

total of 693 genes differentially expressed in cases versus controls

were reported and the differential expression of these genes was

further validated using an independent sample from the human brain

collection core, consisting of 131 SCZ subjects and 176 controls.

Another transcriptome study, performed by Gulsuner et al. (2013),

found that DNMs in SCZ have a spatial and temporal mapping to a

fetal prefrontal cortical network. DNMs were identified in persons with

SCZ and the genes harboring them were mapped onto transcriptome

profiles of normal human brain tissues from age 13 weeks gestation to

adulthood. In the dorsolateral and ventrolateral prefrontal cortex during

fetal development, these genes formed a network significantly enriched

for transcriptional coexpression and protein interaction. The 50 genes

in this network function in neuronal migration, synaptic transmission,

signaling, and transcriptional regulation. This study not only underlined

the role that disruptions of fetal prefrontal cortical neurogenesis have

in SCZ, but also exemplified how genomic and transcriptome data can

be combined to better understand the pathophysiology of SCZ.

Finally, it is important to highlight that environment plays an

important role in SCZ risk. For example, epidemiological studies have

found evidence that difficult social environments such as severe

bullying could increase one’s risk for psychosis twofold (Schreier et al.,

2009). In addition, several in utero and postnatal environmental

threats are thought to be interacting with genetics to increase one’s

predisposition to disease (Brown et al., 2004; Schreier et al., 2009). A

nested case-control study studying the effect of maternal infection (in

this case influenza) on SCZ risk investigated birth records in California

between 1959 and 1966 and determined the diagnosis of children

40 years later. After confirming the presence of influenza anti-body in

maternal serum, individuals exposed to influenza in the first

trimester were found to have a sevenfold increase risk for SCZ

(Brown et al., 2004). Although, viruses do not usually penetrate the

placenta, it is believed that maternal immune response indirectly

impacts the fetus through exposure to proinflammatory cytokines. The

investigation of 17 adult SCZ cases that were exposed to increased

level of interluken-8 in utero had changes to the structure of their brain

recorded by magnetic resonance imaging that were consistent with

SCZ (Ellman et al., 2010).

Our manuscript presents an algorithm to predict patients at high

risk for SCZ based on rare, predicted functional, variants with �86%

accuracy (AUC: 0.95) and a novel approach for exploring the genetics

of different (neuropsychiatric) conditions with complex inheritance. It

would be important to replicate our findings, and the overall approach,

not only in large independent SCZ studies, including cases with

matched controls, but also in family trios (Singh et al., 2016; Takata

et al., 2014). Taking the studies mentioned above into consideration,

the generalizability of our model can potentially be improved by

training the predictor on different levels of data acquired from

multiple cohorts. Given the role of environment, it is unlikely to find a

genetic test that predicts with 100% certainty the individuals who will

develop SCZ solely based on genomic data. If, however, such a predic-

tive algorithm is trained using genomic data (including both exonic

mutations and CNVs), transcriptome data, and ML approaches using

other phenotypic information, such as speech (Bedi et al., 2015) or

neuroimaging data (Gheiratmand et al., 2017), it might be possible to

effectively prioritize high risk individuals meriting early clinical evalua-

tion and/or participation in research studies. This would provide an

opportunity to prospectively explore the impact of different genetic

and environmental factors on an individual’s risk for SCZ and explore

the role of early interventions, such as stress management counseling,

in decreasing this risk.
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